Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations
نویسندگان
چکیده
The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems.
منابع مشابه
General relativistic hydrodynamic flows around a static compact object in final stages of accretion flow
Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent an...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملمدل عددی نیمهضمنی روندیابی هیدرولیکی سیلاب (مطالعه موردی: بازه لیقوان تا هروی لیقوانچای، تبریز)
River flow routing has been a significant issue in hydraulic engineering. The main goal of this research work was solving Saint-Venant equations by using the semi-implicit finite difference scheme and considering energy conservation principle at the discontinuous points of flow field. In this model, with the first order accuracy, the flux limiter scheme and Upwind for the scheme are used for th...
متن کاملDevelopment of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کاملAn Upwind Multigrid Method for Solving Viscous Flows on Unstructured Triangular Meshes
A multigrid algorithm is combined with an upwind scheme for solving the twodimensional Reynolds-averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe’s flux-splitting scheme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015